Monitoring of Mercury and Arsenic in Water Samples from Proximity to Abandoned Cinnabar Mine

Pavlína Pelcová¹, Vendula Smolíková^{1,2}, Andrea Ridošková^{1,3}, Jana Hrachovinová¹, Jan Grmela⁴

 ¹Department of Chemistry and Biochemistry, Mendel University in Brno Zemědělská 1, Brno, Czech Republic
pavlina.pelcova@mendelu.cz; vendula.smolikova@mendelu.cz; andrea.ridoskova@mendelu.cz; jana.hrachovinova@mendelu.cz
²Central European Institute of Technology, Brno University of Technology Purkynova 123, Brno, Czech Republic
³Central European Institute of Technology, Mendel University in Brno Zemědělska 1, CZ-61300, Brno, Czech Republic
⁴Department of Zoology, Fisheries, Hydrobiology and Apiculture Zemědělská 1, Brno, Czech Republic

Abstract - Concentrations of mercury and arsenic were monitored in water samples from the Záskalská water reservoir (Czech Republic) and its tributaries. The total mercury concentration in the reservoir ranged between 0.06–0.11 μ g L⁻¹ and in tributaries between 0.14–0.20 μ g L⁻¹. The effect of water erosion from abandoned cinnabar mine on mercury concentration in tributaries and reservoir was observed. The arsenic concentrations in water samples were between 0.21–0.54 μ g L⁻¹. The 98±10% of arsenic concentration in the water was determined as potentially bioavailable, whereas only 7–20% of the total mercury concentration in the water was determined as bioavailable using diffusive gradients in thin films technique.

Keywords: Heavy metal, Cinnabar mine, Water sample, Metal bioavailability.

1. Introduction

Although the cinnabar mine is abandoned and there is no active mining, the surrounding environment can be significantly contaminated by